97 research outputs found

    Use of multi-angle high-resolution imagery and 3D information for urban land-cover classification: a case study on Istanbul

    Get PDF
    The BELSPO-MAMUD project focuses on the use of Remote Sensing data for measuring and modelling urban dynamics. Remote sensing is a wonderful tool to produce long time-series of high resolution maps of sealed surface useful for this purpose. In the urban context of Istanbul, a very dynamic city, recent high resolution satellite images and medium resolution images from the past have been exploited to calibrate and validate a regression-based sub-pixel classification method allowing this production. In this context it’s a tricky task for several reasons: prominent occurrence of shadowed and occluded areas and urban canyons, spectral confusions between urban and non-urban materials at ground and roof levels, moderately hilly relief ... To cope with these difficulties the combined use of three types of data may be helpful: diachronic (i), multi-angle and 3D data. A master multispectral and panchromatic QuickBird image and a panchromatic Ikonos stereopair, all acquired in March 2002, were used in combination with a multispectral and panchromatic Ikonos image of May 2005. A DSM was generated from the Ikonos stereopair and building vector file. It was used for orthorectification, building height estimation and classification procedure. The area covered by the high resolution products was divided in 3 partitions and each one was classified independently. This application demonstrates that recent high resolution land-cover classification produced using multi-date, multi-angle and DSM can be used to produce sealed surface maps from longer timeseries of medium resolution images over large urban areas enabling so the analysis of urban dynamics

    Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover

    Get PDF
    The amount and intensity of runoff on catchment scale are strongly determined by the presence of impervious land-cover types, which are the predominant cover types in urbanized areas. This paper examines the impact of different methods for estimating impervious surface cover on the prediction of peak discharges, as determined by a fully distributed rainfall-runoff model (WetSpa), for the upper part of the Woluwe River catchment in the southeastern part of Brussels. The study shows that detailed information on the spatial distribution of impervious surfaces, as obtained from remotely sensed data, produces substantially different estimates of peak discharges than traditional approaches based on expert judgment of average imperviousness for different types of urban land use. The study also demonstrates that sub-pixel estimation of imperviousness may be a useful alternative for more expensive high-resolution mapping for rainfall-runoff modelling at catchment scale

    Triple monogenic functions and higher spin Dirac operators

    Get PDF
    In the Clifford analysis context a specific type of solution for the higher spin Dirac operators Q(k,l) (k >= l is an element of N) is studied; these higher spin Dirac operators can be seen as generalizations of the classical Rarita-Schwinger operator. To that end subspaces of the space of triple monogenic polynomials are introduced and their algebraic structure is investigated. Also a dimensional analysis is carried out

    Human and natural impacts on the water resources in the Syr Darya River Basin, Central Asia

    Get PDF
    Water resources are increasingly under stress in Central Asia because downstream countries are highly dependent on upstream countries. Water is essential for irrigation and is becoming scarcer due to climate change and human activities. Based on 20 hydrological stations, this study firstly analyzed the annual and seasonal spatial-temporal changes of the river discharges, precipitation, and temperature in the Syr Darya River Basin and then the possible relationships between these factors were detected. Finally, the potential reasons for the river discharge variations have been discussed. The results show that the river discharges in the upper stream of the basin had significantly risen from 1930 to 2006, mainly due to the increase in temperature (approximately 0.3 degrees C per decade), which accelerated the melting of glaciers, while it decreased in the middle and lower regions due to the rising irrigation. In the middle of the basin, the expansion of the construction land (128.83 km(2)/year) and agricultural land (66.68 km(2)/year) from 1992 to 2015 has significantly augmented the water consumption. The operations of reservoirs and irrigation canals significantly intercepted the river discharge from the upper streams, causing a sharp decline in the river discharges in the middle and lower reaches of the Syr Darya River in 1973. The outcomes obtained from this study allowed us to understand the changes in the river discharges and provided essential information for effective water resource management in the Syr Darya River Basin

    Detection of ground materials using normalized difference indices with a threshold : risk and ways to improve

    Get PDF
    In this short communication, we describe the shortcomings and pitfalls of a commonly used method to detect ground materials that relies on setting thresholds for normalized difference indices. We analyze this method critically and present some experimental results on the USGS and ECOSTRESS spectral libraries and on real Sentinel-2 and Landsat-8 images. We demonstrate the risk of commission errors and provide some suggestions to reduce it

    A GIS-based multi-criteria analysis on cropland suitability in Bornuur Soum, Mongolia

    Get PDF
    Agriculture is one of the most critical sectors of the Mongolian economy. In Mongolia, land degradation is increasing in the cropland region, especially in a cultivated area. The country has challenges to identify new croplands with sufficient capacity for cultivation, especially for local decision-makers. GIS applications tremendously help science in making land assessments. This study was carried out in Bornuur soum, Mongolia. The goal of this study to estimate that best suitable area for supporting crop production in Bornuur soum, using a GIS-based multi-criteria analysis (MCA) and remote sensing. GIS-based multi-criteria analysis (MCA) has been widely used in land suitability analyses in many countries. In this research, the GIS-based spatial MCA among the Analytical Hierarchy Process (AHP) method has employed. The approach was enhanced for each criterion which as soil, topography and vegetation. The opinions of agronomist experts and a literature review helped in identifying criteria (soil data, topography, water and vegetation data) that are necessary to determine areas suitable for crops. The detailed cropland suitability maps indicate that 46.12 % is highly suitable for cropland, 34.68 % is moderate suitable, 13.64 % is marginal suitable and 5.56 % is not suitable. The MCA and AHP tools play an essential role in the multi-criteria analysis. Therefore, the results of these methods allow us to estimate an appropriate area for cultivation in Bornuur soum, Tuv province. The crop suitability method implies significant decisions on different levels and the result will be used for cropland management plan to make a decision. It is an integral role in agricultural management and land evaluation. Future research should further develop this method by including socio-economic (potential citizens for agriculture, current crop growth, water resource, etc.) and environmental variables (rainfall, vegetation types, permafrost distribution, etc.) to obtain specific results. However, it could be also be applied for a single crop type (mainly barley, wheat and potato) in Mongolia

    Description and attribution analysis of the 2017 spring anomalous high temperature causing floods in Kazakhstan

    Get PDF
    It is speculated that floods in many areas of the world have become more severe with global warming. This study describes the 2017 spring floods in Kazakhstan, which, with about six people dead or missing, prompted the government to call for more than 7,000 people to leave their homes. Then, based on the Climatic Research Unit (CRU), the NCEP/NCAR Reanalysis 1, and the Coupled Model Intercomparison Project 5 (CMIP5) simulations, the seasonal trends of temperature were calculated using the linear least-squares regression and the Mann–Kendall trend test. The correlation between the surface air temperature and atmospheric circulation was explored, and the attributable risk of the 2017 spring floods was evaluated using the conventional fraction of the attributable risk (FAR) method. The results indicate that the north plains of Kazakhstan had a higher (March–April) mean temperature anomaly compared to the south plains, up to 3°C, relative to the 1901-2017 average temperature. This was the primary cause of flooding in Kazakhstan. March and April were the other months with a higher increasing trend in temperature from 1901 to 2017 compared with other months. In addition, a positive anomaly of the geopotential height and air temperature for the March–April 2017 period (based on the reference period 1961-1990) was the reason for a warmer abnormal temperature in the northwest region of Kazakhstan. Finally, the FAR value was approximately equal to 1, which supported the claim of a strong anthropogenic influence on the risk of the 2017 March–April floods in Kazakhstan. The results presented provide essential information for a comprehensive understanding of the 2017 spring floods in Kazakhstan and will help government officials identify flooding situations and mitigate damage in future

    Fast automatic airport detection in remote sensing images using convolutional neural networks

    Get PDF
    Fast and automatic detection of airports from remote sensing images is useful for many military and civilian applications. In this paper, a fast automatic detection method is proposed to detect airports from remote sensing images based on convolutional neural networks using the Faster R-CNN algorithm. This method first applies a convolutional neural network to generate candidate airport regions. Based on the features extracted from these proposals, it then uses another convolutional neural network to perform airport detection. By taking the typical elongated linear geometric shape of airports into consideration, some specific improvements to the method are proposed. These approaches successfully improve the quality of positive samples and achieve a better accuracy in the final detection results. Experimental results on an airport dataset, Landsat 8 images, and a Gaofen-1 satellite scene demonstrate the effectiveness and efficiency of the proposed method

    Estimation of photosynthetic and non-photosynthetic vegetation coverage in the lower reaches of Tarim River based on sentinel-2A data

    Get PDF
    Estimating the fractional coverage of the photosynthetic vegetation (fPV) and non-photosynthetic vegetation (fNPV) is essential for assessing the growth conditions of vegetation growth in arid areas and for monitoring environmental changes and desertification. The aim of this study was to estimate the fPV, fNPV and the fractional coverage of the bare soil (fBS) in the lower reaches of Tarim River quantitatively. The study acquired field data during September 2020 for obtaining the fPV, fNPV and fBS. Firstly, six photosynthetic vegetation indices (PVIs) and six non-photosynthetic vegetation indices (NPVIs) were calculated from Sentinel-2A image data. The PVIs include normalized difference vegetation index (NDVI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI), modified soil adjusted vegetation index (MSAVI), reduced simple ratio index (RSR) and global environment monitoring index (GEMI). Meanwhile, normalized difference index (NDI), normalized difference tillage index (NDTI), normalized difference senescent vegetation index (NDSVI), soil tillage index (STI), shortwave infrared ratio (SWIR32) and dead fuel index (DFI) constitutes the NPVIs. We then established linear regression model of different PVIs and fPV, and NPVIs and fNPV, respectively. Finally, we applied the GEMI-DFI model to analyze the spatial and seasonal variation of fPV and fNPV in the study area in 2020. The results showed that the GEMI and fPV revealed the best correlation coefficient (R2) of 0.59, while DFI and fNPV had the best correlation of R2 = 0.45. The accuracy of fPV, fNPV and fBS based on the determined PVIs and NPVIs as calculated by GEMI-DFI model are 0.69, 0.58 and 0.43, respectively. The fPV and fNPV are consistent with the vegetation phonological development characteristics in the study area. The study concluded that the application of the GEMI-DFI model in the fPV and fNPV estimation was sufficiently significant for monitoring the spatial and seasonal variation of vegetation and its ecological functions in arid areas
    • …
    corecore